
National Institute of Applied Sciences and Technology

CARTHAGE UNIVERSITY

DevSecOps Project

Specialty : Software Engineering

Practical SSDLC

Presented by

Racem BENRHAYEM

INSAT Supervisor : M. KARMOUS Mohamed Aymen

Presented on : 01/06/2023

Academic Year : 2022/2023

Table of Contents

List of Figures iii

General Introduction 1

I Secure Requirement Gathering , Architecture and Design 2
1 Secure Requirement Gathering . 3

1.1 Goals, Strategies and Metrics . 3
1.2 Understanding the policies . 3

2 Secure Architecture and Design . 3
2.1 Threat Tree Diagram . 3
2.2 Data Flow Diagram . 5
2.3 Applying STRIDE . 5

3 Chosen Architecture and Technologies . 6
3.1 General Architecture . 6
3.2 Technologies Used . 7

II Secure Development 8
1 Following Secure Coding Best Practises . 9

1.1 Performing Input Validation . 9
1.2 File Upload Validation . 10
1.3 Upload Storage . 11
1.4 Prevent HTTP Parameter Pollution . 11
1.5 Only Return What Is Necessary . 11
1.6 Protecting Sensitive Data . 12
1.7 Tokens Management . 12
1.8 Cross-Origin Resource Sharing . 12
1.9 Monitoring the event loop . 12
1.10 Taking precautions against brute-forcing 13
1.11 Exception Handling . 13
1.12 Logging . 13
1.13 Database Access . 13

2 Secure Build . 14
2.1 Auditing Dependencies . 14

i

Table des Matières

2.2 Software Composition Analysis . 14
2.2.1 Dependabot . 15
2.2.2 Snyk . 16

III Secure Testing 18
1 Static Application Security Testing . 18

1.1 CodeQL analysis . 18
1.2 Github Secret Scanning . 19
1.3 SonarQube . 19

2 Software Composition Analysis . 20
2.1 Snyk . 20

IV Secure Release and Deployment 23
1 Containerization . 23

1.1 Containerization And Docker . 23
1.2 Creating Dockerfiles . 24

2 NGINX Web Server . 25
2.1 Key Uses and Advantages . 25
2.2 Nginx Serving Content . 26
2.3 Nginx as a Reverse Proxy . 26
2.4 HTTPS . 27

3 Docker SWARM . 27

Conclusion and Perspectives 28

ii

List of Figures

I.1 Threat Tree Diagram -Authorization . 4
I.2 Threat Tree Diagram -Injection . 4
I.3 Data Flow Diagram . 5

II.1 Front-end dependencies audit . 15
II.2 Front-end dependencies fix . 15
II.3 Back-end dependencies audit . 15
II.4 Dependabot pull requests . 16
II.5 Dependabot notification . 16
II.6 Snyk pull request . 17

III.1 CodeQL analysis result . 19
III.2 SonarQube analysis result . 20
III.3 SonarQube identifying a potential risk and suggesting a possible solution 21
III.4 Snyk analyzing new dependencies . 22

IV.1 SonarQube recursive copy warning . 24
IV.2 Copying only necessary files . 25
IV.3 SonarQube scripts warning . 25

iii

General Introduction

Secure software development life cycle (SDLC) is crucial because application security has be-
come a paramount concern. Gone are the days when releasing a product and addressing bugs
later was sufficient. Developers now need to proactively address security at every step of the
development process. Integrating security into the SDLC is essential to protect against poten-
tial vulnerabilities. With source code accessibility, coding with security in mind is imperative.
Establishing a robust and secure SDLC process is critical to safeguarding applications from
attacks by hackers and malicious users.
This report presents the comprehensive work undertaken for the development of our blog web-
site, with a specific focus on the integration of Secure Software Development Life Cycle (SSDLC)
principles. Our primary objective was to create a secure and reliable platform that offers en-
gaging content while prioritizing the protection of user information and interactions.
Throughout the project, we diligently applied SSDLC principles at every stage of development.
We initiated the process by incorporating secure design and architecture considerations, iden-
tifying potential threats and vulnerabilities, and implementing robust security measures. This
included the implementation of strong authentication mechanisms, secure data storage prac-
tices, and measures to defend against common attacks like cross-site scripting (XSS) and SQL
injection.
During the coding and development phase, our team diligently followed secure coding practices
to minimize the introduction of vulnerabilities. We prioritized proper input validation, output
encoding, and secure handling of user-generated content. Regular security testing, such as vul-
nerability scanning, was conducted to identify and rectify any potential security weaknesses.
To enforce stringent access controls and protect against unauthorized access, we implemented
granular user account management and meticulous administrative privilege protocols. Addi-
tionally, we ensured the timely application of security patches and updates to maintain the
website’s resilience against emerging threats.
By adhering to SSDLC principles, we successfully created a blog website that not only offers
captivating content but also prioritizes the security and privacy of our users. This report pro-
vides an overview of the meticulous steps taken to achieve a reliable and secure platform where
users can confidently engage, interact, and contribute to the dynamic world of blogging.

1

Chapter I

Secure Requirement Gathering , Architecture
and Design

Summary
1 Secure Requirement Gathering . 3

1.1 Goals, Strategies and Metrics . 3

1.2 Understanding the policies . 3

2 Secure Architecture and Design . 3

2.1 Threat Tree Diagram . 3

2.2 Data Flow Diagram . 5

2.3 Applying STRIDE . 5

3 Chosen Architecture and Technologies 6

3.1 General Architecture . 6

3.2 Technologies Used . 7

Introduction

In this chapter, we start with the first step in SSDLC process which is secure requirement
gathering, analysis. It is a security practice that refers to functional and non-functional re-
quirements that need to be satisfied to protect the web application. After that, we move to
the second step which is secure architecture and design that should be applied to mitigate
the risks of any successful cyber attack coming from any potential threat in a poorly designed
architecture. These two steps needs a strong understanding of cyber security.

2

Chapter I.

1 Secure Requirement Gathering

1.1 Goals, Strategies and Metrics

Our goal is to protect the web application against web attacks. For that we have two main
strategies :
First, educating the team about secure coding best practices to fix the vulnerabilities during
the development process. We defined the number of critical vulnerabilities discovered using a
SAST application as a metric.
Second, fixing the vulnerabilities associated with the application’s dependencies when the vul-
nerability gets discovered. The metric in this strategy is the time spent from discovering the
vulnerability until fixing it.

1.2 Understanding the policies

The main policy is to apply security controls on data. To reach that we defined two standards :
Authentication and Authorization should be well implemented to control posts and comments
adding and/or editing on the website , Applying a strict input validation to prevent XSS and
injection attacks. We used step-by-step OWASP Cheat Sheet Series to ensure data integrity
and safety.

2 Secure Architecture and Design

2.1 Threat Tree Diagram

This model is used to analyze and understand the attack surface of a system and the potential
attack paths that an attacker could take to compromise the system.
The first Threat that comes to the mind is that an attacker may modify or delete another user
posts or comments as described in Figure I.1.
The second threat is that an attacker could inject malicious content when posting a post or a
comment which may lead to an XSS or injection attack. With the capability of adding images
to a post , he could send large files to shutdown the system (DDos attack) as shown in Figure
I.2.

3

Chapter I.

Figure I.1 – Threat Tree Diagram -Authorization

Figure I.2 – Threat Tree Diagram -Injection

4

Chapter I.

2.2 Data Flow Diagram

A data flow diagram (DFD) maps out the flow of information for any process or system. The
Figure I.3 models the System and shows data inputs, outputs, storage points and the routes
between each destination.

Figure I.3 – Data Flow Diagram

2.3 Applying STRIDE

STRIDE is a threat model that considers potential threats based on: Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service and Elevation of privilege.
STRIDE can be applied in conjunction with a Data Flow Diagram to identify and analyze
potential security threats in a system.

• Spoofing: A poor authentication mechanism and a poor management of tokens may cause
an attacker to spoof or impersonate the user to gain unauthorized access to the system
where he can modify or delete posts and comments. That’s why we reduced tokens
validity.

• Tampering: An attacker could potentially modify content of the database files or uploaded
images to inject malicious data or bypass access control. A possible cause of such a threat
is a poor validation of data. For that, A validation and sanitization process is implemented
to prevent injection attacks. Also, encrypting the authentication requests and responses.

• Repudiation: An Attacker may perform a prohibited actions in the system that are
difficult to trace. For that, we keep logs of all API calls and database queries for auditing
purposes.

5

Chapter I.

• Information Disclosure: An attacker could potentially modify queries to extract sensitive
data (such as passwords and emails) from the database. To remediate such a threat, we
encrypted sensitive data in the database and we made sure that no sensitive data transits
via API responses (only return what is necessary).

• Denial of Service: An attacker could overwhelm the Front-end with login requests to deny
access to legitimate users or cause the system to crash. Also, he could overwhelm the
back-end with large Files when uploading images. A possible solution is to implement
rate limiting to prevent excessive login attempts from a single user, limit the number and
size of files uploaded.

• Elevation of Privilege: An attacker could potentially exploit vulnerabilities to elevate their
privileges and gain unauthorized access to the website, to the system or to the database.
That’s why a good input validation is required to prevent injection attacks.

3 Chosen Architecture and Technologies

The decision was made based on the comprehensive study described above.

3.1 General Architecture

Three-Tier architecture is opted for this system which is is a software architecture pattern that
divides an application into three distinct layers:

• Presentation Layer (Front-end): it is Responsible for the user interface and presentation
of information to the users. It handles user interactions, displays data, and collects input
from users.

• Business Logic Layer (Back-end) : It contains the core business logic and rules of the
application. It processes the user requests received from the presentation layer, performs
necessary computations, and coordinates data access and manipulation.

• Data Storage Layer: It manages the interaction with databases or other data storage
systems, ensuring data integrity, security, and efficiency.

Three-tier architecture offers several advantages for software development. It enhances scala-
bility by allowing independent scaling of each layer, ensuring efficient resource allocation and
accommodating increasing user demands. The layered structure promotes maintainability and

6

Chapter I.

modularity, making the system easier to manage, modify, and enhance. Components and mod-
ules within each layer can be reused, reducing development time and effort while maintaining
consistency. Security measures can be implemented at each layer, ensuring data integrity and
mitigating risks.

3.2 Technologies Used

• Angular: A popular front-end framework, provides several security advantages for web
application development. It automatically sanitizes user input, guarding against cross-site
scripting (XSS) attacks. Angular also includes robust mechanisms for handling authen-
tication and authorization, enabling developers to implement secure user authentication
and role-based access control. It provides features like route guards and HTTP inter-
ceptors to control access to sensitive routes and protect against unauthorized requests.
Furthermore, Angular’s use of a component-based architecture promotes encapsulation
and separation of concerns, reducing the risk of security vulnerabilities through code
isolation.

• NestJs: A powerful back-end framework that integrates well with popular security li-
braries, making it easier to implement robust security features. It benefits from the active
open-source community, providing regular updates, bug fixes, and security patches to en-
sure the framework remains secure. Moreover, NestJS follows the principle of modularity,
allowing the creation of reusable security modules that can be shared across different
parts of the application, improving consistency and reducing the likelihood of security
gaps.

• MongoDB: A NoSQL database offers several security advantages for data storage and
management. It is designed to mitigate traditional SQL injection attacks. It also supports
field-level encryption, enabling sensitive data to be encrypted at rest, providing an extra
layer of protection.

Conclusion

Together, requirement gathering and architecture designing enable effective planning and decision-
making throughout the software development life-cycle. Making those steps secure is crucial
to detect potential vulnerabilities and address them early, reducing the risk of malicious at-
tacks and data breaches. Moreover, the three-tier architecture provides a robust framework for
building scalable, maintainable, and secure software systems using the appropriate technologies.

7

Chapter II

Secure Development

Summary
1 Following Secure Coding Best Practises 9

1.1 Performing Input Validation . 9

1.2 File Upload Validation . 10

1.3 Upload Storage . 11

1.4 Prevent HTTP Parameter Pollution 11

1.5 Only Return What Is Necessary . 11

1.6 Protecting Sensitive Data . 12

1.7 Tokens Management . 12

1.8 Cross-Origin Resource Sharing . 12

1.9 Monitoring the event loop . 12

1.10 Taking precautions against brute-forcing 13

1.11 Exception Handling . 13

1.12 Logging . 13

1.13 Database Access . 13

2 Secure Build . 14

2.1 Auditing Dependencies . 14

2.2 Software Composition Analysis . 14

Introduction

This phase includes the actual engineering and writing of the application while attempting to
meet all the requirements established during the secure requirement gathering, analysis and
planning phase.

8

II.1 Following Secure Coding Best Practises

1 Following Secure Coding Best Practises

In this section, we will mention the secure coding best practises that we used during the
development of the project. We used the recommendations provided in The OWASP Top Ten
cheat sheet.

1.1 Performing Input Validation

Input validation is crucial for securing web applications because it helps prevent various types of
malicious attacks and vulnerabilities that are already mentioned including SQL injection and
XSS attacks. To effectively implement input validation, it’s essential to combine server-side
validation and client-side validation. Server-side validation is critical as it cannot be bypassed
by attackers, while client-side validation helps provide instant feedback to users.

• Server-Side: NestJs comes with a plenty of concepts that help developers validate the
users’ input. Let’s start with the combination of Data Transfer Object (DTO) with the
recommended packages class-validator and class-transformer. A DTO is an object that is
used to transfer data between different layers of an application and provide a standardized
format for communication. The class-validator library provides decorators that you can
apply to the properties of your DTO classes to define validation rules. Furthermore,
Nestjs provide a really powerful ready-to-use validation pipes. Another step of validation
is sanitizing HTML input using sanitize-html library. This II.1 shows an example of
validating users’ content when creating a new account.

Listing II.1 – Input Validation Example

import {

IsEmail,

IsNotEmpty,

IsString,

MaxLength,

MinLength,

} from ’class-validator’;

export class CreateUserDto {

@IsNotEmpty()

@IsString()

username: string;

@IsNotEmpty()

@IsString()

9

II.1 Following Secure Coding Best Practises

@IsEmail()

email: string;

@IsNotEmpty()

@IsString()

@MinLength(8)

@MaxLength(16)

password: string;

}

• Client-Side: In Angular, we used the built-in form validators to perform client-side
validation on forms. These validators help ensure that the data entered by the user meets
specific criteria before submitting the form. Adding to that, We implemented a pipe
that benefits from Angular built-in DomSanitizer service that sanitize and mark HTML
content as safe.

Listing II.2 – Implemented Pipe

import { Pipe, PipeTransform, SecurityContext } from ’@angular/core’;

import { DomSanitizer } from ’@angular/platform-browser’;

@Pipe({

name: ’safeHTML’,

})

export class SafeHTMLPipe implements PipeTransform {

constructor(private sanitized : DomSanitizer){}

transform(value: string) {

return this.sanitized.sanitize(SecurityContext.HTML, value);

}

}

1.2 File Upload Validation

Our website comes with the feature that a user could add images to his posts. For that, it is
primordial that we implement upload verification.
To begin with, we ensured that the uploaded filename uses an expected extension type. In our
case, the expected files are images so we allowed only png, jpg, jpeg and gif extensions. In
addition, we limited ,not only, the number of allowed images per post to five, but also the file

10

II.1 Following Secure Coding Best Practises

size limit to 8 megabytes (this is the recommended value by SonarQube That is presented in
this section 1.3).

1.3 Upload Storage

As it is recommended to generate new and unique names to the files that are uploaded and the
file path should be decided by server side. The purpose of doing it is to prevent the risks of
direct file access and ambiguous filename.

1.4 Prevent HTTP Parameter Pollution

In a normal HTTP request, parameters are sent as key-value pairs in the query string or request
body. Each parameter has a unique name and value, allowing the application to process the
data accurately. However, the attacker intentionally includes multiple parameters with the same
name but different values which may lead to unpredictable interpretation of these parameters
by the targeted application. This is what called a HTTP Parameter Pollution (HPP) attack.
To mitigate to such a threat, we used the hpp module that will ignore all values submitted for
a parameter and take only the last value submitted.

1.5 Only Return What Is Necessary

When handling user data in an application, it’s crucial to prioritize data security and privacy.
User records typically contain sensitive information such as IDs, usernames, email addresses
and passwords . To mitigate the risk of personal information disclosure, it’s important to limit
the retrieval and usage of user objects to only the necessary fields. We returned only specific
fields required when querying the database.

Listing II.3 – Do not return password field

const user = await this.userModel

.findOne({ _id: id })

.select({ password: 0 })

.populate({

path: ’posts’,

})

.populate({

path: ’comments’,

populate: {

path: ’post’,

select: ’title’,

11

II.1 Following Secure Coding Best Practises

},

})

.exec();

1.6 Protecting Sensitive Data

It is crucial to store passwords in a way that prevents them from being obtained by an attacker
even if the application or the database is compromised. For that, we opted for password hashing
using the bcrypt hashing function.

1.7 Tokens Management

We used JWT as the format for security tokens. JWT, stands for Json Web Token, are JSON
data structures containing a set of claims that can be used for access control decisions. Also,
we used a secret key to sign the token and ensure its integrity. The secret key is a secret known
only to the server that issues and verifies JWTs and it is kept confidential. In addition, we
minimized the validity of tokens by specifying the token expiration time. It is important to
note that JWT authentication mechanism is stateless, meaning that the server does not need
to store any session information or maintain any state about the authenticated user on the
server-side. After verifying the token, the server can extract information contained in it. Then,
this extracted information is passed to NestJs guards allowing to implement authorization rules
and authentication checks to protect specific endpoints or resources.

1.8 Cross-Origin Resource Sharing

CORS (Cross-Origin Resource Sharing) is a W3C standard that allows web applications to
specify which domains or origins are permitted to make JavaScript requests to a REST API.
By including appropriate CORS headers in the API responses, the server informs the browser
about the allowed domains for making cross-domain requests.
In our case, we only allowed the domain where our front-end is deployed.

1.9 Monitoring the event loop

Under heavy network traffic, an application server may become overwhelmed and unable to
effectively serve its users. This situation is akin to a Denial of Service (DoS) attack, where the
server is rendered unavailable to legitimate users due to the excessive demand on its resources.
To mitigate this threat, we used toobusy-js module that allows to monitor the event loop. It

12

II.1 Following Secure Coding Best Practises

keeps track of the response time, and when it goes beyond a certain threshold, this module can
indicate that the server is too busy. In that case, we stopped processing incoming requests and
send 503 Server Too Busy message so that our application stay responsive.

1.10 Taking precautions against brute-forcing

As we discussed earlier, in the previous chapter, that a possible threat is overwhelming the
system with requests causing it to crash. Consequently, it is crucial for application developers,
especially on login pages, to implement measures to mitigate brute-force attacks. NestJs comes
with a ready module named ThrottlerModule and we configured it to block an IP address from
sending requests if it exceeded ten requests in less than sixty seconds.

1.11 Exception Handling

We tried to cover a good number of exceptions and returning a simple, comprehensible responses
with the appropriate code status without revealing any sensitive information. In addition,
NestJs comes with a built-in exceptions layer which is responsible for processing all unhandled
exceptions across an application. When an exception is not handled by our application code, it
is caught by this layer, which then automatically sends an appropriate user-friendly response.

1.12 Logging

NestJS has a built-in text-based logger you can use without needing to install any additional
packages. It logs really useful information and errors in controllers and providers. Also, it logs
all HTTP requests that hit our server. Good and accurate logs about a user’s activity can
alert us about malicious actions and when an error happened which are crucial for auditing
purposes.

1.13 Database Access

Our database is deployed on MongoDB Cloud. We used the free plan that is more than enough
to handle this project. Absolutely, there are many benefits for deploying the database on the
cloud. We can mention some of them:

• Scalability: MongoDB Cloud provides flexible scalability options, allowing us to easily
scale our database infrastructure as our application grows.

13

II.2 Secure Build

• Managed Service: MongoDB Cloud is a fully managed service, which means that the
operational aspects of database management, such as hardware provisioning, software
patching, backups, and monitoring, are taken care of by MongoDB.

• Security: MongoDB Cloud includes built-in access controls, authentication mechanisms,
and auditing capabilities to help us implement robust security practices.

One of the security techniques in MongoDB cloud is limiting access to the database to only
allowed IP addresses. It is clear that we whitelisted only the server IP address that runs our
API.

2 Secure Build

Absolutely, our project uses third-party libraries and dependencies to benefit from ready-to-use
features without reinventing the wheel. Our policy consists of only using trusted and verified
libraries and dependencies that are not vulnerable to known security issues. In this section we
will mention the techniques we used to maintain the previous policy.

2.1 Auditing Dependencies

Our project is written with Typescript in nodejs environment. The package manager for our
project is NPM. NPM stands for ”Node Package Manager” and it is used to install, update,
and uninstall packages and their dependencies.
NPM is able to audit the third-party libraries mentioned in package.json file and can fix the
known vulnerabilities if there is a known fix. In our project, we have two ”package.json” files:
one for the Front-end and the other for the Back-end. Let’s start auditing the Front-end
dependencies as shown in the Figure II.1.
The result of the audit shows that there is 1 high severity vulnerability. Luckily, it comes with
a fix available so we did it as mentioned in the Figure II.2
Let’s repeat the same process for the Back-end dependencies. The Figure II.3 show that there
is no severe vulnerability in packages installed.

2.2 Software Composition Analysis

So, it is important to review third-party libraries and components to ensure that they are up-to-
date, secure, and used appropriately. Yet, this is an exhausting task. A possible solution is to
use a Software Composition Analysis (SCA) scanner that notify us for any recent vulnerability

14

II.2 Secure Build

Figure II.1 – Front-end dependencies audit

Figure II.2 – Front-end dependencies fix

Figure II.3 – Back-end dependencies audit

affecting the actual libraries used in the project and for any new dependencies’ versions. In this
project, we integrated two commonly used SCA scanners which are Dependabot and Snyk.

2.2.1 Dependabot

Dependabot is a software development tool that automates the process of keeping project
dependencies up to date. It continuously monitor them for any available updates, security
patches, or bug fixes. When updates are detected, Dependabot can automatically create pull
requests or issue notifications, depending on the configured settings. The Figure II.4 shows
some of the pull requests that were created by Dependabot and the Figure II.5 shows and
example of an email sent to notify us about updates.

15

II.2 Secure Build

Figure II.4 – Dependabot pull requests

Figure II.5 – Dependabot notification

2.2.2 Snyk

Snyk is a developer security platform. Integrating directly into development tools, workflows,
and automation pipelines, Snyk makes it easy for teams to find, prioritize, and fix security
vulnerabilities in code, dependencies, containers, and infrastructure as code. Supported by
industry-leading application and security intelligence, Snyk puts security expertise in any de-

16

II.2 Secure Build

veloper’s toolkit.
We added our project to Snyk platform to allow him to create pull requests when a security
patch is available. Here is an example in the Figure II.6 of a merged pull request created by
snyk-bot.

Figure II.6 – Snyk pull request

Conclusion

In software development, it is important to uphold coding best practices, adhere to security
recommendations, and exclusively rely on trusted dependencies. Following these principles
diligently guarantees the creation of a robust, secure, and reliable application, fortified against
vulnerabilities and potential risks. Ultimately, by adhering to these practices, developers can
ensure the development of high-quality software that delivers a reliable and secure experience
to its users.

17

Chapter III

Secure Testing

Summary
1 Static Application Security Testing 18

1.1 CodeQL analysis . 18

1.2 Github Secret Scanning . 19

1.3 SonarQube . 19

2 Software Composition Analysis . 20

2.1 Snyk . 20

Introduction

Secure testing refers to the practice of conducting software testing with a focus on identifying
and addressing security vulnerabilities and risks. It involves evaluating the security posture of
an application or system through various testing techniques to ensure that it is robust against
potential attacks and adequately protects sensitive data. We configured all of our test tools
with Github workflows so they are automatically triggered on push and on pull requests to the
master branch.

1 Static Application Security Testing

Static Application Security Testing (SAST) is a type of security testing that focuses on ana-
lyzing the source code of an application to identify potential security vulnerabilities and weak-
nesses.

1.1 CodeQL analysis

CodeQL is a powerful static analysis engine developed by Semmle, a company acquired by
GitHub. It allows developers to query codebases and find potential security vulnerabilities,
bugs, or other code quality issues.

18

III.1 Static Application Security Testing

When scanning the source code, codeQL reports that there is a database query built from user
controlled-sources in two different parts of our Back-end as described in the Figure III.1. Both
issues marked with high severity potential vulnerability.
To resolve these two issues, we verified again our implementation and we marked them as a
false alarm because we already implemented input validation and sanitization as we discussed
earlier in section 1.1

Figure III.1 – CodeQL analysis result

1.2 Github Secret Scanning

GitHub Secret Scanning is a security feature provided by GitHub to help detect and prevent the
exposure of sensitive information, such as API keys, tokens, and passwords, within public and
private repositories. It automatically scans repositories for known secret patterns and notifies
repository administrators when potential secrets are identified.
In the project repository we enabled Github Secret Scanning and we have no sensitive infor-
mation that was exposed or hard-coded in the source code.

1.3 SonarQube

SonarQube is an open-source platform that provides continuous code quality management and
static code analysis. It helps developers and teams to track, manage, and improve the quality
of their source code throughout the software development lifecycle.
In our project, we used the SonarQube Cloud that integrated directly with Github with no
installation needed.

19

III.2 Software Composition Analysis

The First analysis of the code source as mentioned in the Figure III.2 shows a really good
results. Our code has zero Duplication, Bugs and Vulnerabilities. However, if we look carefully,

Figure III.2 – SonarQube analysis result

we notice that there is a critical security issue. We have to remember that in the section 1.2
we limited the file size in upload process, that solution was recommended by SonarQube. The
figure III.3 describes the risk identified by this tool.

2 Software Composition Analysis

We already introduced the concept of the Software Composition Analysis in section 2.2. This
time we used the SCA from another perspective to complete the secure testing phase.

2.1 Snyk

We had already defined what Snyk is and what it does in the following section 2.2.2.
This time we used Snyk in a different task. When opening a new pull request to the master
branch, Snyk detects new dependencies introduced to the project and verifies that the new
pull request does not contain any known vulnerable dependency. The Figure III.4 shows a pull
request that successfully passed Snyk security tests.

20

III.2 Software Composition Analysis

Figure III.3 – SonarQube identifying a potential risk and suggesting a possible solution

Conclusion

Secure testing is an essential component of the software development life-cycle, enabling devel-
opers and organizations to identify and address security weaknesses early in the development
process. By conducting thorough security testing, vulnerabilities can be remediated, reducing
the risk of successful attacks and ensuring the overall security and integrity of the software.

21

III.2 Software Composition Analysis

Figure III.4 – Snyk analyzing new dependencies

22

Chapter IV

Secure Release and Deployment

Summary
1 Containerization . 23

1.1 Containerization And Docker . 23

1.2 Creating Dockerfiles . 24

2 NGINX Web Server . 25

2.1 Key Uses and Advantages . 25

2.2 Nginx Serving Content . 26

2.3 Nginx as a Reverse Proxy . 26

2.4 HTTPS . 27

3 Docker SWARM . 27

Introduction

In software development, deployment refers to the process of making a software application
available for use. It involves taking the developed software and installing or configuring it on
the target environment where it will be used by end-users. In this chapter we are talking about
the steps we did to deploy our project.
Consideration: All following tasks were done locally.

1 Containerization

1.1 Containerization And Docker

Containerization is a method of packaging an application, its dependencies, and its configura-
tion into a standardized, lightweight unit called a container. Docker is an open platform for
developing, shipping, and running applications. It provides tools to manage the life-cycle of
containers and it is one of the most widely used containerization platforms available today.

23

IV.1 Containerization

1.2 Creating Dockerfiles

Our project is divided into two different deployable components: the Front-end and the Back-
end. We created a separate dockerfile for each of them. We need to keep in mind that this
step should be done securely, for that we followed the OWASP recommendations about docker
security. In addition, SonarQube also scanned these two dockerfiles and helped us fixing po-
tential vulnerabilities.
In the following part we are going to enumerate some of them.

• Copying recursively: When creating a dockerfile, we had the habit to use the ”COPY
. .” command. This may put a risk as SonarQube mentions that copying recursively
might inadvertently add sensitive data to the container as shown in the Figure IV.1 .
To remediate to such a problem, we copied only necessary files to run our project. The
Figure IV.2 shows an example of this solution.

Figure IV.1 – SonarQube recursive copy warning

• Execution of shell scripts: In dockerfile, we usually run commands defined in pack-
age.json file. Those commands may contain malicious shell scripts. For that, we have to
add ”–ignore-scripts” flag to the command to make sure that no shell script is being
executed with NPM commands. This is what SonarQube warned us about in the Figure
IV.3

24

IV.2 NGINX Web Server

Figure IV.2 – Copying only necessary files

Figure IV.3 – SonarQube scripts warning

2 NGINX Web Server

We have a ubuntu machine where we are going to deploy our project. For now, we have two
running containers. We need to setup a web server in front of them and we used NGINX for
its beneficial key uses.

2.1 Key Uses and Advantages

Nginx is a popular web server that is known for its high performance, scalability, and versatility.
It is commonly used as a reverse proxy server, load balancer, and HTTP cache.

• Web server: Nginx can serve static and dynamic content, making it suitable for host-

25

IV.2 NGINX Web Server

ing websites, web applications, and APIs. It efficiently handles concurrent connections,
optimizing resource utilization and response times.

• Reverse Proxy: Nginx can act as an intermediary between clients and backend servers,
distributing incoming requests and forwarding them to appropriate destinations. It pro-
vides load balancing and improves the overall performance and reliability of the system.

• Load balancer: Nginx’s load balancing capabilities allow us to distribute incoming
traffic across multiple backend servers, improving scalability and preventing any single
server from being overwhelmed. It supports various load balancing algorithms and can
automatically adapt to changing server conditions.

• SSL/TLS termination: Nginx can handle SSL/TLS encryption and decryption, of-
floading the CPU-intensive task from backend servers. It simplifies the configuration and
management of SSL/TLS certificates, enhancing security and performance.

2.2 Nginx Serving Content

We used the Angular CLI to build our Angular application. This will generate a set of static
files that can be served by Nginx. So this is how the Front-end docker image is built. It contains
two stages: the first one for building the application and the second one is configuring Nginx
to serve the static files to optimize the delivery of our application and provide a smooth and
efficient user experience.

2.3 Nginx as a Reverse Proxy

We configure NGINX to route incoming requests to the Front-end container. To accomplish
that, we edited the default server configuration to route incoming requests to the port where
our Front-end is running.

Listing IV.1 – NGINX as a Reverse Proxy

location / {

proxy_pass http://localhost:5000; #whatever port your app runs on

proxy_http_version 1.1;

proxy_set_header Upgrade $http_upgrade;

proxy_set_header Connection ’upgrade’;

proxy_set_header Host $host;

proxy_cache_bypass $http_upgrade;

}

26

IV.3 Docker SWARM

2.4 HTTPS

HTTPS (Hypertext Transfer Protocol Secure) is the secure version of HTTP, the protocol used
for transmitting data over the internet. It adds an extra layer of encryption and authentication
to ensure secure communication between a web browser and a web server and this communi-
cation cannot be intercepted by unauthorized parties.
To ensure that our web server uses HTTPS we need to generate SSL/TLS certificates. To do
that we used Certbot.
Certbot is a free and open-source software tool designed to automate the process of obtaining
and managing SSL/TLS certificates for websites. It simplifies the process of enabling HTTPS
encryption on web servers by providing an easy-to-use command-line interface.
Certbot integrates easily with Nginx helping us obtaining certificates in few commands. It
comes also with auto-renewal feature.

3 Docker SWARM

Docker SWARM is a native clustering and orchestration solution provided by Docker. It uses
two types of nodes: managers and workers. Docker SWARM provides built-in load balancing
for services. Incoming traffic to a service is automatically distributed among the running
containers on different worker nodes. In addition, it keeps a state of running containers and
works on keeping that state.
For the simplicity, we used only one manager node which will play both roles at once: a
manager and a worker. We configured the manager to run one replication of each service,
Front-end and Back-end. When a container stoppes unexpectedly, the manager creates a new
one to ensure that there is one container of each service running. As a result, we make sure
that our application availability is at its highest level.

Conclusion

The deployment phase in the software life cycle is of paramount importance as it marks the
release of the product to customers, ensuring customer satisfaction and validating development
efforts. It provides an opportunity for real-world testing, gathering user feedback, and iterating
on the software to improve its quality.

27

Conclusion and Perspectives
In conclusion, this report showcases the extensive implementation of Secure Software Develop-
ment Life Cycle (SSDLC) principles in the development of our blog website. We have effectively
integrated security considerations throughout the entire project, demonstrating our commit-
ment to ensuring a secure and trustworthy platform. By comprehensively implementing SSDLC
principles, we have achieved a blog website that not only offers engaging content but also in-
stills confidence in its security. Users can confidently explore, interact, and contribute to the
platform, knowing that their information is protected.
One notable limitation is the absence of an automatic deployment process. Currently, the de-
ployment of the website requires manual intervention, which can be time-consuming and prone
to human error. Automating the deployment process would streamline operations, enhance
efficiency, and reduce the risk of inconsistencies during deployment. By automating the de-
ployment, we can ensure a more seamless and reliable process, enabling quicker updates and
enhancements while maintaining the high-security standards established throughout the de-
velopment cycle. Implementing an automated deployment solution should be considered as a
future enhancement to further enhance the efficiency and agility of the project.
Overall, this report highlights our dedication to delivering a secure and reliable blog website,
demonstrating our commitment to user privacy and data protection. The successful implemen-
tation of SSDLC principles ensures that our platform meets high-security standards, creating
a trusted environment for users to enjoy the content and engage with the blogging community.

28

29

	List of Figures
	General Introduction
	I Secure Requirement Gathering , Architecture and Design
	1 Secure Requirement Gathering
	1.1 Goals, Strategies and Metrics
	1.2 Understanding the policies

	2 Secure Architecture and Design
	2.1 Threat Tree Diagram
	2.2 Data Flow Diagram
	2.3 Applying STRIDE

	3 Chosen Architecture and Technologies
	3.1 General Architecture
	3.2 Technologies Used

	II Secure Development
	1 Following Secure Coding Best Practises
	1.1 Performing Input Validation
	1.2 File Upload Validation
	1.3 Upload Storage
	1.4 Prevent HTTP Parameter Pollution
	1.5 Only Return What Is Necessary
	1.6 Protecting Sensitive Data
	1.7 Tokens Management
	1.8 Cross-Origin Resource Sharing
	1.9 Monitoring the event loop
	1.10 Taking precautions against brute-forcing
	1.11 Exception Handling
	1.12 Logging
	1.13 Database Access

	2 Secure Build
	2.1 Auditing Dependencies
	2.2 Software Composition Analysis
	2.2.1 Dependabot
	2.2.2 Snyk

	III Secure Testing
	1 Static Application Security Testing
	1.1 CodeQL analysis
	1.2 Github Secret Scanning
	1.3 SonarQube

	2 Software Composition Analysis
	2.1 Snyk

	IV Secure Release and Deployment
	1 Containerization
	1.1 Containerization And Docker
	1.2 Creating Dockerfiles

	2 NGINX Web Server
	2.1 Key Uses and Advantages
	2.2 Nginx Serving Content
	2.3 Nginx as a Reverse Proxy
	2.4 HTTPS

	3 Docker SWARM

	Conclusion and Perspectives

